

Nexla contributes key innovations from its cutting-edge agentic AI framework to the open source community, reinforcing its commitment to advancing enterprise-grade AI technology.
In order to grow successfully, companies need to leverage DataOps to better manage data teams. Nexla’s second annual Data Operations survey reveals vast majority of companies have plans to invest in DataOps to better manage data teams to fuel artificial intelligence and machine learning efforts.
We’re excited to announce the results of the industry’s only annual data operations survey. The comprehensive survey tracks the adoption and best practices of Data Operations (DataOps). It found that a staggering 73% of companies are investing in DataOps.
We asked our friends over at research firm Pulse Q&A to conduct a survey with 266 data professionals about how they use data, their team structure, and data challenges.
“It’s clear that backend data teams are strapped for resources, which is why 73% have plans to invest in DataOps,” said Saket Saurabh, Nexla Co-founder and CEO. “DataOps is as much about people as it is about tools and processes. To really drive value from machine learning, AI, and advanced analytics, data teams need to stop troubleshooting and start automating. We built Nexla to help data teams create automated, repeatable, and scalable data flows so they can focus on deriving value from data.”
Data Operations is an emerging organization-wide data management practice that controls the flow of data from source to value, with the goal of speeding up the process of deriving value from data. The outcome is scalable, repeatable, and predictable data flows for data engineers, data scientists, and business users. An important thing to note: DataOps is as much about people as it is about tools and processes.
DataOps takes care of the grunt work typically placed on IT or data engineers. This includes integrating with data sources, performing transformations, converting data formats, and writing or delivering data to its required destination. A DataOps practice can open data access to more stakeholders within an organization, further increasing capacity for scale.
With DataOps, tasks like data clean-up/prep, analysis, and data integration can be automated—effectively minimizing the engineering queue. When data engineers are no longer spending a majority of their time on these mundane tasks, they can switch focus towards higher value-add tasks for advanced machine learning, AI, and real-time streaming. In turn, business operations and production moves much faster when data teams are no longer strapped for resources.
The Data Operations survey was commissioned by Nexla and conducted by the executive research platform Pulse Q&A. The survey polled 266 IT and data professionals, including analysts, data scientists, data engineers, and executives. The survey was fielded between May 3 — May 21, 2018.
To get a copy of the full report, visit: https://nexla.com/definitive-data-operations-report-2018/
Pulse Q&A is a company dedicated to helping C-suite executives make better strategy, innovation and enterprise technology decisions – starting with CIOs. Today, many of these leaders still rely on one-size-fits all reports when setting important strategies. Pulse is challenging that practice with real-time, bite-sized data from thousands of IT executives discussing innovation and spend on their platform. Pulse’s goal is to shift focus away from analyst to the executives making the decisions every day. By giving users access to relevant conversations and crowdsourced data, Pulse Q&A aims to pull executives out of their echo chambers and, instead, make decisions based on current data and real world experiences. For more information, visit www.pulse.qa.
Discover how Nexla’s powerful data operations can put an end to your data challenges with our free demo.